
CROPS

Specialty crops grown with organic and sustainable farming techniques

Flavones: Apigenin, Luteolin, Adenosine Chlorophyll

Saponins: Soyasapogenol B3, Soyasapogenol E3, Medicagenic Acid, Bayogenin, Hederagenin, Soyasapogenol A, Soyasaponin I, Foumononetin, Zahnic Acid Flavonols: Quercetin

Carotenoids: Beta Carotene, Alpha Carotene, Beta Cryptoxanthin

Chlorophyll & Flavonols

Saponins: Soyasaponin V, Soyasaponin I Phenolic Acids: Ferulic Acid, p-Coumaric Acid, Sinapic Acid, Feruroyl-malate, Coumaroyl-malate

Flavonols: Quercetin, Quercetin-3-glucoronide, Quercetin-3-glycoside, Quercetin-3-acetylglycoside, Kaempferol, Kaempferol-3-glycoside, Kaempferol-3-O-rutinoside, Kaempferol-3-Oacetyl-glucoside, Kaempferol-3-O-glucoside, Kaempferol-3-O-xylosyl-glucoside, Rutin,


Isofilavanoids: Genistein

Lignans: Lariciresinol, Pinoresinol, Secoisolariciresinol, Syringaresinol

Chlorophyll

Phenolic Acids: Ferullic Acid, Chlorogenic Acid Flavonols: Saponarin, Lutonarin Flavones: Luteolin, Cynaroside, Orientin, Isoorientin, Vitexin, Isovitexin, Luteolin-3-7-dl-glucoside Fiber: Arabinoxyian

Flavonols: Quercetin Flavones: Luteolin Lignans: Secoisolariciresinol Nitrate Betalains: Betanin, Isobetanin

Saponins: Avenacoside A, Avenacoside B Phenolic Acids: 4-Hydroxybenzoic Acid, Hydroxybenzaldehyde, Vanillic Acid, Ferulic Acid, p-Coumaric Acid, Sinapic Acid Avenanthramides: Avenanthramide A, B, C and E

Flavanones: Neohesperidin

Fiber: Beta-glucan, Arabinoxylan, Type 1 Resistant Starch Lignans: Lariciresinol, Medioresinol, Pinoresinol, Secoisolariciresinol, Matairesinol, Syringaresinol

Chlorophyll & Myrosinase

Glucosinolates: Glucobrassicin, Glucoiberin, Sinigrin, Progoitrin, Glucoraphasatin, Glucoraphanin, Gluconapin

Cartenoids: Lutein Carotenoids: Beta Carotene Flavones: Luteolin Flavonols: Kaemferol, Quercetin Fiber

Lignans: Lariciresinol, Pinoresinol, Secoisolarciresinol

Chlorophyll

Carotenoids: Lutein, Zeaxanthin Flavonols: Rutin, Quercetin Carotenoids: Beta Carotene Anthocyanidins: Cyanidin, Cyanidin-3-glcoside, Cyanidin-3-galactoside

Chlorophyll

Carotenoids: Lutein, Zeaxanthin Flavanols: Catechin, Epicatechin, Gallocatechin, Epigallocatechin Saponins: Soyasaponin I, Soyasaponin ßg Flavonols: Quercetin, Kaempferol

Phenolic Acids: Sinapoyl-glucoside Lignans: Lariciresinol. Medioresinol.

Secoisolariciresinol, Pinoresinol, Syringaresinol

Myrosinase

Glucosinolates: Glucoraphanin, Sinigrin, Glucoraphenin, Gluconapin, Glucobrassicanapin, 4-MeOH Glucobrassicin, Glucoerucin, Glucoraphasatin, Glucobrassicin, Neoglucobrassicin

Tannins Saponins

Fiber

Chlorophyll & Myrosinase

Glucosinolates: Glucoraphanin, Sinigrin, Gluconapin, Clucobrassicanapin, Glucoerucin, Glucoraphasatin, Glucobrassicin, 4-MeOH Glucobrassicin, Neoglucobrassicin

SPANISH BLACK RADISH

Chlorophyll Carotenoids: Lutein, Zeaxanthin Carotenoids: Beta Carotene Flavonols: Kaempferol, Myricetin, Quercetin Lignans: Secoisolariciresinol Betalains: Betacyanins, Betaxanthins

BUCKWHEAT

Carotenoids: Lutein Carotenoids: Beta Carotene Flavonols: Kaempferol, Quercetin Fiber Lignans: Lariciresinol, Matairesinol, Pinoresinol, Secoisolariciresinol

KALETTE

Chlorophyll

Myrosinase

Glucosinolates: Glucobrassicin, Glucoiberin, Sinigrin, Progoitrin, Glucoraphasatin, Glucoraphanin, Gluconapin, Glucobrassicanapin, Glucoerucin

Carotenoids: Lutein, Zeaxanthin Carotenoids: Beta Carotene

TURNIP GREENS

Chlorophyll Myrosinase

Glucosinolates: Neoglucobrassicin, Glucobrassicanapin, Glucoraphasatin Carotenoids: Lutein, Zeaxanthin Carotenoids: Beta Carotene Flavonols: Kaempferol, Quercetin Phenolic Acids: Gallic Acid, Protocatechuic Acid, Caffeic Acid, Ferulic Acid **Ellagic Acid**

©2019 Standard Process Inc.

PHYTOACTIVES

WHAT ARE PHYTONUTRIENTS?

Saponins:

Phytonutrients are natural, plant-derived compounds that support life and offer protection – innately in plants but for plant-eating humans as well. For example, a 2014 meta-analysis found that the more vegetables eaten, the lower the risk of all-cause mortality.¹

WHY CARE ABOUT PHYTONUTRIENTS?

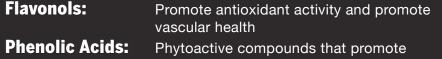
The human body needs phytonutrients in a different way than it needs nutrients like protein, vitamins, and minerals. Phytonutrients are uniquely able to satisfy free radicals circulating in the body looking for electrons. By providing electrons, phytonutrients prevent free radicals from taking electrons from proteins or other nutrients, a "theft" that leads to oxidative stress.

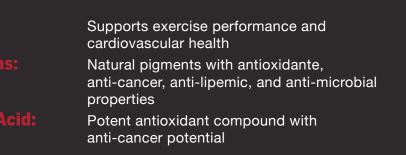
HOW ARE PHYTONUTRIENTS AND FOOD COLOR CONNECTED?

Different plant colors are associated with the beneficial protection of phytonutrients, and encouraging diversity of plant-based colors in a given meal can be a great method for improving diet choices.

Flavones:	Promote antioxidant, anticancer, antimicrobial, and anti-inflammatory activity
Chlorophyll:	Green pigment in plants with potential anti-inflammatory, antioxidant, and anti-bacterial activity
Myrosinase:	Enzyme found in plant tissue that initiates conversion of glucosinolates to bioactive isothiocyanates
Glucosinolates:	Sulfur-containing secondary metabolites mostly found in cruciferous vegetables, when activated by myrosinase from the plant or after ingestion by gut bacteria, associated with positive effects temming from antioxidant activity such as cardio-protection and detoxification support
Cartenoids:	Antioxidants with anti-cancer potential that may lower risk of macular degeneration
Flavanols:	Promote antioxidant, anticancer, antimicrobial, and anti-inflammatory activity

Antioxidants with anti-cancer potential and may lower risk of macular degeneration
Phytoactive compound with anti-inflammatory, anti-microbial, and anti-cancer activities
Phytoactive compounds with anti-inflammatory, anti-microbial, and anti-cancer activity
Colorless flavonoid compounds with antioxidant activity


Anthocyanids


Purple and red pigments concentrated in buckwheat stems with strong antioxidant and anti-inflammatory activity

immune system and promote healthy
cholesterol and blood glucose levelsTannins:Large set of diverse phenolic compounds found
in plants that contribute to antioxidant activity,
antimicrobial action and distinct dark color

antioxidant activity and promote vascular health

Isoflavanoids: Phenolic compounds with direct antioxidant effects

Avenanthramides: Phenolic acids exclusive to oats with antioxidant and anti-inflammatory activities and a bitter perception Fiber:

Lignans:

Promote healthy cholesterol levles, promote cardiovascular health, and support healthy bowel function

Large plant polyphenolic compounds that bypass human digestion, feed gut bacteria, and provide antioxidant activity

©2019 Standard Process Inc.