Magnesium Blog Series: The Forgotten Nutrient | Part 4 – Getting Enough Mg

August 6, 2018 • 3 min read
Summary

With declining nutrient content in foods and broad consumption of SAD-style diets, deficiencies in essential nutrients have become extremely common.

How Much Magnesium Is Enough: RDA and EAR

The proposed normal range for serum magnesium is approximately 1.7 to 2.2 mg/dL.49 The RDA (recommended daily allowance) and EAR (estimated average requirement) to maintain healthy levels of magnesium vary based on age, sex, and reproductive status (Table 2).50-52

Table 2. Estimated average requirements (EAR) and recommended daily allowances (RDA) for magnesium intake in adults.50-52

Age (years) EAR (mg/day) RDA (mg/day)
19-30 (males/females) 330/255 400/310
>30 (males/females) 350/265 420/320
Pregnancy (14-18/19-20/31-50) 335/290/300 400/350/360

 

The Problem: Insufficient Dietary Magnesium Intake

With declining nutrient content in foods and broad consumption of SAD-style diets, deficiencies in essential nutrients such as magnesium have become extremely common. An analysis of 2005-2006 NHANES data identified dietary magnesium intake below EAR (estimated average requirement) in 48% of 8437 participants.6 In this study, about 60% of surveyed adults did not consume the established RDA (recommended daily allowance) for magnesium. A diet-modeling study based on 8944 participants in NHANES (2007-2010) revealed that the percentage of individuals consuming below the EAR for magnesium ranged from 51.7%-88.5% for adult males and 34.5%-75.8% for adult women.5 Accordingly, the 2015-2020 Dietary Guidelines for Americans designate magnesium as an under-consumed nutrient relative to the EAR in the diets of both males and females aged 2 years of age and older.52

Improving Dietary Magnesium Intake: Whole Foods

Dietary sources of magnesium include many whole foods, such as nuts, seeds, legumes, whole-grain cereals, and many vegetables (Table 3).53-57 Conversely, consumption of processed foods, sugars, saturated fats, and refined grains – all of which are common in the SAD – is associated with reduced intake of magnesium and other essential nutrients.58

Table 3. Dietary sources of magnesium.53

Food group Examples Mg content (mg/100g)
Nuts and seeds Pumpkin seeds 592
Flaxseed 392
Sesame seeds 356
Almonds 270
Cashews 260
Walnuts 158
Pistachios 109
Legumes Peanuts 178
Soybeans 86
Chickpeas 48
Kidney beans 45
Lentils 36
Produce Sun-dried tomatoes 194
Spinach 87
Kale 57
Dates 54
Fresh parsley 50
Potatoes with skin 43
Whole grains Buckwheat flour 251
Amaranth grain 248
Quinoa grain 197
Oats 177
Spelt 136
Barley 133
Dairy Parmesan cheese 44
Feta cheese 19
Whole-fat milk 13
Whole-fat yogurt 12
Egg 12
Seafood Cod
Salmon
Meat Chicken breast 34
Turkey 32

 

In a worrying trend, studies have described declining concentrations of micronutrients in food since the first half of the 20th century. For example, investigators have identified magnesium reductions of 4%-8% in beef, 4% in chicken, 38% in cheddar cheese, 70% in parmesan cheese, 21% in whole milk, and 24% in vegetables over decades.59 The magnesium content of wheat has dropped almost 20% since the 1960s, likely due to changes in the soil (e.g., acidification, mineral depletion) and modern cultivation practices (e.g., selective breeding, chemical fertilizers).60 The processing and refinement of food leads to further substantial losses of magnesium. In fact, most processed foods and highly refined grains (e.g., white flour, sugar) are essentially devoid of magnesium.

An analysis of NHANES data (2007-2010) suggested that even with adequate dairy intake (a common source of magnesium), magnesium deficiencies would remain highly prevalent in Americans (34%-75% of males, 17%-51% of females).5

Variety Matters

Magnesium levels vary by type of plant, cultivar, and plant anatomy. Magnesium is mobile in the phloem and can be found in high concentrations in rapidly growing structures with good access to phloem, such as roots, seeds, tubers, and fruit. Some species with higher concentrations of magnesium in the leaves include beets, chard, and spinach.61 Magnesium concentrations also vary by cultivar. One review identified magnesium levels ranging from 45.8-69.3 mg/100 g across varieties of kale and 8.7-12.3 mg/100 g among types of carrots.61

Given the wide range of magnesium levels within and between plants, consuming a variety of plants may be the best strategy to optimize dietary magnesium intake.

The Benefits of Magnesium Supplementation

With the declining levels of magnesium in available foods, many people may be challenged to maintain adequate magnesium levels through diet alone. Magnesium supplements are another option to support healthy magnesium status. Compared to food alone, the addition of dietary supplements significantly increases intake of nutrients, including magnesium, and reduces nutrient inadequacies in adults.62

The benefits of magnesium supplementation have been widely demonstrated. Several such studies are illustrated in Table 1. Additional studies have linked magnesium supplementation to reduced stress and depressive symptoms. For example, a study from France evaluated the effect of supplementation with magnesium, probiotics, and vitamins in 242 subjects with psychological stress.63 Following 1 month of supplementation, measures of subjects’ psychological stress decreased significantly (P<0.0001); fatigue scores also decreased significantly (P<0.0001). An open-label, randomized study evaluated the effect of magnesium supplementation in 126 adults with mild-to-moderate depression.64 After 6 weeks of magnesium chloride supplementation, depressive symptoms improved significantly over baseline (6.0 point improvement in Patient Health Questionnaire-9 scores, P<0.001). Anxiety scores also improved significantly. The supplement was well tolerated, and 61% of participants said they would use magnesium in the future.

Many people are in need of some level of magnesium supplementation. These deficits are illustrated in Table 4, which shows the mean daily intake of magnesium in the 2011-2012 NHANES survey compared to RDA.65 The addition of a supplement containing 100mg dietary magnesium would bring the mean magnesium intake to within the RDA values for both gender for all age brackets.

Table 4. Magnesium intake from food and beverages compared to RDA and the impact of a 100 mg/day magnesium supplement. Data from the 2011-2012 NHANES survey.65

Gender Age (years) Daily intake (mg/day) RDA (mg/day) Mg deficit (mg) Difference with 100 mg/day supplement (mg)
Male 20-29 346 400 -54 +46
30-39 388 420 -32 +68
40-49 375 420 -45 +55
50-59 348 420 -72 +28
60-69 360 420 -60 +40
≥70 301 420 -119 -19
Female 20-29 266 310 -44 +66
30-39 299 320 -21 +79
40-49 275 320 -45 +55
50-59 278 320 -42 +58
60-69 272 320 -48 +52
≥70 249 320 -71 +29

 

Summary

Magnesium is an essential nutrient for human health. Deficiencies in magnesium increase risk for serious chronic diseases, whereas increased intake through improved diet and/or supplementation can improve health status and reduce disease risk. Unfortunately, current evidence indicates that half or more of Americans currently have some degree of subclinical magnesium deficiency. Increasing magnesium intake requires greater consumption of whole foods (unrefined grains, vegetables, fruits, nuts) and reduced intake of refined or processed foods. For many people, the addition of a magnesium supplement may be required to replete magnesium stores and maintain healthy magnesium levels over the long term.

Did you like this article?

Like

1. Grober U, Schmidt J, Kisters K. Magnesium in Prevention and Therapy. Nutrients. Sep 23 2015;7(9):8199-8226.

2. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. May 1 2013;4(3):378S-383S.

3. Rosique-Esteban N, Guasch-Ferre M, Hernandez-Alonso P, Salas-Salvado J. Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies. Nutrients. Feb 1 2018;10(2).

4. Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. Dec 2010;23(4):S194-198.

5. Quann EE, Fulgoni VL, 3rd, Auestad N. Consuming the daily recommended amounts of dairy products would reduce the prevalence of inadequate micronutrient intakes in the United States: diet modeling study based on NHANES 2007-2010. Nutr J. Sep 4 2015;14:90.

6. Moshfegh AG, Goldman J, Ahuja J, Rhodes D, LaComb R. What We Eat in America, NHANES 2005-2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magneisum. . Washington, DC: U.S. Department of Agriculture, Agriculture Research Service;2009.

7. Wang JL, Shaw NS, Yeh HY, Kao MD. Magnesium status and association with diabetes in the Taiwanese elderly. Asia Pac J Clin Nutr. 2005;14(3):263-269.

8. Olza J, Aranceta-Bartrina J, Gonzalez-Gross M, et al. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study. Nutrients. Feb 21 2017;9(2).

9. Costello RB, Elin RJ, Rosanoff A, et al. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv Nutr. Nov 2016;7(6):977-993.

10. Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. Feb-Jun 2003;24(1-3):27-37.

11. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. Feb 2012;5(Suppl 1):i3-i14.

12. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. Dec 2004;15(12):710-716.

13. Nielsen FH, Milne DB, Gallagher S, Johnson L, Hoverson B. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnes Res. Mar 2007;20(1):19-31.

14. Schwalfenberg GK, Genuis SJ. The Importance of Magnesium in Clinical Healthcare. Scientifica (Cairo). 2017;2017:4179326.

15. Hermes Sales C, Azevedo Nascimento D, Queiroz Medeiros AC, Costa Lima K, Campos Pedrosa LF, Colli C. There is chronic latent magnesium deficiency in apparently healthy university students. Nutr Hosp. Jul 1 2014;30(1):200-204.

16. Elin RJ. Re-evaluation of the concept of chronic, latent, magnesium deficiency. Magnes Res. Dec 2011;24(4):225-227.

17. Mejia-Rodriguez F, Shamah-Levy T, Villalpando S, Garcia-Guerra A, Mendez-Gomez Humaran I. Iron, zinc, copper and magnesium deficiencies in Mexican adults from the National Health and Nutrition Survey 2006. Salud Publica Mex. May-Jun 2013;55(3):275-284.

18. DiNicolantonio JJ, O'Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5(1):e000668.

19. Kunutsor SK, Whitehouse MR, Blom AW, Laukkanen JA. Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study. Eur J Epidemiol. Jul 2017;32(7):593-603.

20. Orchard TS, Larson JC, Alghothani N, et al. Magnesium intake, bone mineral density, and fractures:

results from the Women's Health Initiative Observational Study. Am J Clin Nutr. Apr 2014;99(4):926-933.

21. Rude RK, Singer FR, Gruber HE. Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr. Apr 2009;28(2):131-141.

22. Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab. Jan-Apr 2015;12(1):18-21.

23. Szkup M, Jurczak A, Brodowska A, et al. Analysis of Relations Between the Level of Mg, Zn, Ca, Cu, and Fe and Depressiveness in Postmenopausal Women. Biol Trace Elem Res. Mar 2017;176(1):56-63.

24. Rajizadeh A, Mozaffari-Khosravi H, Yassini-Ardakani M, Dehghani A. Effect of magnesium supplementation on depression status in depressed patients with magnesium deficiency: A randomized, double-blind, placebo-controlled trial. Nutrition. Mar 2017;35:56-60.

25. Taveira TH, Ouellette D, Gulum A, et al. Relation of Magnesium Intake With Cardiac Function and Heart Failure Hospitalizations in Black Adults: The Jackson Heart Study. Circ Heart Fail. Apr 2016;9(4):e002698.

26. Fang X, Wang K, Han D, et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med. Dec 8 2016;14(1):210.

27. Han H, Fang X, Wei X, et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J. May 5 2017;16(1):26.

28. Dibaba DT, Xun P, Song Y, Rosanoff A, Shechter M, He K. The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials. Am J Clin Nutr. Sep 2017;106(3):921-929.

29. Zhang X, Li Y, Del Gobbo LC, et al. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension. Aug 2016;68(2):324-333.

30. Rebholz CM, Tin A, Liu Y, et al. Dietary Magnesium and Kidney Function Decline: The Healthy Aging in Neighborhoods of Diversity across the Life Span Study. Am J Nephrol. 2016;44(5):381-387.

31. Sarrafzadegan N, Khosravi-Boroujeni H, Lotfizadeh M, Pourmogaddas A, Salehi-Abargouei A. Magnesium status and the metabolic syndrome: A systematic review and meta-analysis. Nutrition. Apr 2016;32(4):409-417.

32. He K, Liu K, Daviglus ML, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. Apr 4 2006;113(13):1675-1682.

33. Hruby A, Meigs JB, O'Donnell CJ, Jacques PF, McKeown NM. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged americans. Diabetes Care. Feb 2014;37(2):419-427.

34. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Guerrero-Romero F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res. Sep 2016;111:272-282.

35. Tarighat Esfanjani A, Mahdavi R, Ebrahimi Mameghani M, Talebi M, Nikniaz Z, Safaiyan A. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol Trace Elem Res. Dec 2012;150(1-3):42-48.

36. Adebamowo SN, Spiegelman D, Willett WC, Rexrode KM. Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. Am J Clin Nutr. Jun 2015;101(6):1269-1277.

37. Fang X, Han H, Li M, et al. Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies. Nutrients. Nov 19 2016;8(11).

38. Hruby A, Guasch-Ferre M, Bhupathiraju SN, et al. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes: Results From Three U.S. Cohorts. Diabetes Care. Dec 2017;40(12):1695-1702.

39. Guerrero-Romero F, Simental-Mendia LE, Hernandez-Ronquillo G, Rodriguez-Moran M. Oral magnesium supplementation improves glycaemic status in subjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled randomized trial. Diabetes Metab. Jun 2015;41(3):202-207.

40. Hayhoe RPG, Lentjes MAH, Mulligan AA, Luben RN, Khaw KT, Welch AA. Cross-sectional associations of dietary and circulating magnesium with skeletal muscle mass in the EPIC-Norfolk cohort. Clin Nutr. Jan 30 2018.

41. Veronese N, Stubbs B, Maggi S, et al. Dietary Magnesium and Incident Frailty in Older People at Risk for Knee Osteoarthritis: An Eight-Year Longitudinal Study. Nutrients. Nov 16 2017;9(11).

42. Welch AA, Skinner J, Hickson M. Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients. Oct 30 2017;9(11).

43. Wu L, Zhu X, Fan L, et al. Magnesium intake and mortality due to liver diseases: Results from the Third National Health and Nutrition Examination Survey Cohort. Sci Rep. Dec 20 2017;7(1):17913.

44.Wakimoto P, Block G. Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J Gerontol A Biol Sci Med Sci. Oct 2001;56 Spec No 2:65-80.

45. Killilea DW, Maier JA. A connection between magnesium deficiency and aging: new insights from cellular studies. Magnes Res. Jun 2008;21(2):77-82.

46. Lin J, Epel E, Blackburn E. Telomeres and lifestyle factors: roles in cellular aging. Mutat Res. Feb 1 2012;730(1-2):85-89.

47. Mazidi M, Kengne AP, Banach M. Mineral and vitamin consumption and telomere length among adults in the United States. Pol Arch Intern Med. Feb 2 2017;127(2):87-90.

48. Shah NC, Shah GJ, Li Z, Jiang XC, Altura BT, Altura BM. Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med. 2014;7(3):497-514.

49. National Institutes of Health, US National Library of Medicine. Magnesium blood test. 2018; Available at: https://medlineplus.gov/ency/article/003487.htm.

50. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. Washington, DC: National Academy Press;1997.

51. National Institutes of Health, Office of Dietary Supplements. Magnesium. 2018; Available at: https://ods.od.nih.gov/FactSheets/magnesium/.

52. US Department of Health and Human Services, US Department of Agriculture. Dietary guidelines for Americans 2015-2020, 8th ed. 2015; Available at: https://health.gov/dietaryguidelines/2015/guidelines/.

53. US Department of Agriculture. USDA National Nutrient Database for Standard Reference Release 28. 2015; Available at: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference/.

54. Rehm CD, Drewnowski A. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study. Nutr J. Mar 7 2017;16(1):17.

55. Papanikolaou Y, Jones JM, Fulgoni VL, 3rd. Several grain dietary patterns are associated with better diet quality and improved shortfall nutrient intakes in US children and adolescents: a study focusing on the 2015-2020 Dietary Guidelines for Americans. Nutr J. Feb 20 2017;16(1):13.

56. O'Neil CE, Nicklas TA, Fulgoni VL, DiRienzo MA. Cooked oatmeal consumption is associated with better diet quality, better nutrient intakes, and reduced risk for central adiposity and obesity in children 2-18 years: NHANES 2001-2010. Food Nutr Res. 2015;59:26673.

57. O'Donovan CB, Devlin NF, Buffini M, et al. Whole grain intakes in Irish adults: findings from the National Adults Nutrition Survey (NANS). Eur J Nutr. Jan 20 2018.

58. Martinez Steele E, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr. Feb 14 2017;15(1):6.

59. Thomas D. The mineral depletion of foods available to us as a nation (1940-2002)--a review of the 6th Edition of McCance and Widdowson. Nutr Health. 2007;19(1-2):21-55.

60. Guo W, Nazim H, Liang Z, al. E. Magnesium deficiency in plants: an urgent problem. Crop J. 2016;4:83-91.

61. Broadley MR, White PJ. Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc Nutr Soc. Nov 2010;69(4):601-612.

62. Blumberg JB, Frei B, Fulgoni VL, Weaver CM, Zeisel SH. Contribution of Dietary Supplements to Nutritional Adequacy in Various Adult Age Groups. Nutrients. Dec 6 2017;9(12).

63. Allaert FA, Courau S, Forestier A. Effect of magnesium, probiotic, and vitamin food supplementation in healthy subjects with psychological stress and evaluation of a persistent effect after discontinuing intake. Panminerva Med. Dec 2016;58(4):263-270.

64. Tarleton EK, Littenberg B, MacLean CD, Kennedy AG, Daley C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS One. 2017;12(6):e0180067.

65. US Department of Agriculture, Agricultural Research Service. Nutrient intakes from food: Mean amounts consumed per individual, one day, 2005-2006. 2008; Available at: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/.

Scientifically driven. Education focused. Healing Inspired.

Subscribe to Insights

Receive clinically driven nutrition insights you can trust.

Animated Newsletter WM
close

Join Our Community to Read Further

This is a premium article created for our Healthcare Practitioner readers. Create a free account to continue reading and gain full access.

Dismiss

signup-logo

WholisticMatters offers health care practitioners and nutrition enthusiasts alike the opportunity to create a free profile for access to site features like bookmarking. Enjoying an article you are reading or a video you are watching? Save it to come back to later! Sign up in seconds for continuous access to all that WholisticMatters has to offer.

WholisticMatters also offers health care practitioners who create a free user profile access to exclusive content and tools to utilize in clinical practice. Articles, tools, and downloads created specifically for practitioners to use in their office for better patient education in clinical nutrition and health. Sign up today with your email and credentials so we can confirm you as a health care practitioner, and you are free to peruse the resources unique to you and your colleagues in health.

close

Create Your Account:

show-pass Please use 8 or more characters with a mix of letters, numbers & symbols


signup-logo
close

Create a free account to use our great bookmarking tool

Once your account is created, you'll be able to save and organize what matters to you!

Already have an Account?


Click 'Sign Up' above to accept Wholistic Matters's Terms of Service & Privacy Policy.
close

Are you a Healthcare Professional? Sign Up For Free Access!

We'll verify your credentials and get you access to our great interactive tools.

Already have an Account?


Click 'Sign Up' above to accept Wholistic Matters's Terms of Service & Privacy Policy.